Light is possibility itself.
2026 – Pursuing another “イ” that will change the world

On December 25, 1926, in the Hamamatsu area of Japan, the letter “イ” (a Japanese katakana character, pronounced “i”) was electronically transmitted and displayed on the first time on a cathode ray tube. To Professor Kenjiro Takayanagi – later called “the father of Japanese television” – this was the moment when something entirely new had been introduced to the world.

From that point on, this television technology transformed the lives of people all over the world. It also led to the creation of a company called Hamamatsu Photonics that works with “photons” or particles of light.

Hamamatsu Photonics products and technology include optical sensors, light sources, and systems that use these components. They are applied to various new technologies and devices to support people’s lives and to help achieve a more comfortable and prosperous society. For example, our products are widely used for state-of-the-art medical equipment, test and inspection systems, microscopes that reveal the functions of cells, and giant telescopes that explore the mysteries of the universe.

We take pride in the fact that our photonics technology is a Key Enabling Technology for great things. We are a company that still creates totally original things not yet found in our world.

Our research aims for something not yet achieved. Developing technologies that are thought impossible can sometimes be a grueling experience, but it can also lead to unexpected results. We believe that such efforts bring new value for people and creates new industries and prosperity for our world. To carry on the spirit of Professor Kenjiro Takayanagi and make Hamamatsu a base for photonics technology, we will continue our efforts to build a foundation that will serve as an essential cornerstone for the future.

2026 will mark 100 years from the time that the letter “イ” was first displayed on a screen. Keeping this “イ” in mind, we are setting our sights on creating a new “イ” that will again change the world – because that is the kind of company we are at Hamamatsu Photonics.

Message from the president
Akira Hiruma
President and CEO
Hamamatsu Photonics K. K.
Kamiokande has brought us a number of new discoveries. Yet these great discoveries are only the start for a stream of new evolution.

In 1987, Kamiokande made a stunning achievement, namely detecting the observation of neutrinos that were released from a supernova explosion. This one-in-a-million chance, brought from a point in space 160,000 light-years away, was captured by the world’s largest 13-ton diameter photomultiplier tubes.

This technology has continually evolved and been taken over by Super-Kamiokande that is currently working to even higher performance and is eventually to be succeeded by the Hyper-Kamiokande project.
When ultra-high energy gamma rays traveling through outer space collide with the Earth’s atmosphere, a natural phenomenon that produces many particles called an air shower occurs. Observing the Cherenkov light generated from this collision with a gamma ray telescope makes it possible to measure the source and energy of high-energy gamma rays. This will help find and reveal the workings of various phenomena such as those occurring in the center of an active galactic nuclei, supernova explosions, and gamma ray bursts, which are unexplained phenomena in our universe.

Gamma-ray telescope experiment sheds light on unexplained phenomena

The Higgs boson often called the God particle has not been discovered up until recently. Its existence has finally been confirmed by the experiments using the “Large Hadron Collider (LHC)” - the world’s largest accelerator measuring 27 kilometers in circumference. Hamamatsu Photonics SSD (Silicon Strip Detectors) contributed to this great discovery. These SSD detected the tracks along which the particles pass to a resolution within a few dozen micrometers.

Contributing to detection of “Higgs boson” often called the God particle that gives mass to matter particles

The Subaru Telescope is a large-scale optical infrared telescope located at an elevation of 4205 meters atop Mauna Kea on the Island of Hawaii. This new generation telescope offers epoch-making high observation performance. Its ultra-wide-field prime focus camera contains CCD area image sensors made by Hamamatsu Photonics that boast the highest sensitivity in the world. The Subaru Telescope observed a galaxy that is 12.91 billion light-years away from Earth (about 700 million years after the Big Bang).

Image sensors with the world’s highest sensitivity mounted in the Subaru Telescope
Body, life, and mind
all spring from effects of
the same substances.
Light reveals how these substances work
and is the key to help treat all kinds
of illnesses.

Human beings
and Light

A cytological image of a sample of cells prepared by a technique called liquid-based cytology, acquired by scanning with the “NanoZoomer” virtual slide scanner. Cytological diagnosis is used to determine whether or not there are cancer cells in a sample stained on a pathology glass slide by observing it at high magnification. Hamamatsu Photonics continues to deliver various solutions that will strongly support pathological diagnosis using the most advanced photonics technology.
Medical (Imaging)

No matter how healthy you are, you cannot reduce the future risk of disease to zero. Early detection of disease by regular health checkups is very important. Hamamatsu Photonics manufactures high-performance devices optimized for medical use such as PET (position emission tomography), mammography and X-ray CT. Our devices currently play an important role in medical examinations throughout the world by detecting diseases including cancer at their early stages.

Detecting disease at an even earlier stage

Medical (Sample testing)

If we could carry out highly accurate daily health tests at home, then daily health management and health awareness would be vastly improved. If we could obtain detailed test results from just a small amount of blood, then this would take a large burden off the person being tested. To make them a reality, Hamamatsu Photonics provides cutting-edge photonics technology for medical use in the form of compact high-performance devices for new medical fields that include blood tests, biochemical tests, immunological tests, and bacteria tests.

To maintain daily health in mind and body every day

Life Science

The human body consists of 60 trillion cells and each cell functions according to its genetic information. If we could understand the molecular level mechanism by which cells proliferate and die then we could develop new therapeutic agents and drugs. Molecular mechanisms that control higher functions in organisms are currently being revealed one after another. Hamamatsu Photonics continues to provide advanced detection technology for research fields underlying the study of life phenomena.

Capturing complex and diverse life phenomena ranging from molecules to tissue

Photo: Beats of myocardial cells derived from iPS cells

Photo: PET/CT scanner

Photo: ORCA-Fusion

Photo: Functional drug screening system (TOYOBO Co., Ltd.)

Photo: Digital video cassette system (Hamamatsu Photonics K.K.)

Photo: Bioassay for mice skin imaging (DMDA Japan)

1

2

3

4

5

6

7

8

9

10
Creating energy that brings the blessing of the sun within reach…

Light can possibly solve the two major problems of energy shortages and environmental destruction at the same time.

Future and Light

A spherical vacuum vessel is installed in a laboratory surrounded by concrete walls 2 meters thick.

A nuclear fusion target is placed in the center of this vacuum vessel and irradiated by a high-power laser beam guided through a red pipe to trigger a nuclear fusion reaction with deuterium.

Light or namely photons have properties of both a wave and a particle and so possess the potential to open up entirely new applications in various industrial fields.
Industry

Light is essential in modern industry that allows no compromise with quality and safety.

While recent years have seen increasingly tougher demands for food product safety and industrial product quality, there also seems to be no letup in the pace of tech advances to streamline and speed up production processes. Hamamatsu Photonics is helping to refine and streamline manufacturing and inspection processes to deal with diverse problems in the industrial field. Hamamatsu Photonics does this by offering a wide-ranging product lineup including X-ray sources and detectors capable of non-contact and non-destructive inspection of defects in tiny internal structures.

Daily Life

Photonics technology that supports a future life of greater convenience

Highly sophisticated devices are making their way into close-at-hand items in our daily lives such as constantly evolving wearable communication terminals, household robots in the form of automatic vacuum cleaners, and other gadgets. Hamamatsu Photonics photodetector and light emitter devices are expanding into ever widening areas encompassing our daily lives. Our optical devices are also being applied to the automotive field through photonics technology as distance measurement devices for automatic brake control and light level sensors that automatically control air conditioners and headlights, and so on.

Environment

What can photonics technology do to achieve a sustainable society?

Human actions have caused multiple environmental problems such as pollution of air and water quality, global warming and radiation issues. To protect our world from these problems and achieve a sustainable society, it is essential that we create highly accurate optical measurement techniques. Hamamatsu Photonics designs and fabricates environmental measurement devices that capture accurate information on air, water quality and soil. We also contribute to alleviating global environmental problems by offering various types of optical measurement products such as mini-spectrometers and module products specifically designed for detecting radiation.
A future world with an optimal balance among Earth, people, and all life --- we aim to achieve this wonderful dream through the research into “light” which is the source of all substances.

At Hamamatsu Photonics we have created technologies for generating and applying “new light” using key concepts such as optical computing, complex systems, and interactions between light and matter. We are progressing step by step toward a new type of information processing through research into highly sophisticated light control and measurement on the spatial axis, time axis, and wavelength axis of light.

Optical information processing and measurement

PET
PET is capable of non-invasive and quantitative imaging of information on biological functions. Statistical analysis of PET images taken from many patients allow creating an image of body sections with low metabolic activity.

Health care and medicine

In order to bring “true health” to all of us, we have continually applied a wide range of photonics technologies into this field. These include development of PET system, PET applied research, near-infrared spectroscopy and imaging, sports measurements, biomedical research and so on. This work will continue to expand the new possibilities of light into the future.

Biophotonics

We have been continuously researching how biological phenomena interacts with light. Through understanding these mechanisms, we hope to create useful tools that will improve our lives. In our research, sometimes we use biological materials to create models. For example, we have made environmental sensors that use the photosynthesis system of algae, and have created photosensitive nerve cells that use the photosensitive enzyme to understand the mechanisms of neurological disease. Such research may lead to exciting applications in drug discovery and advanced medical fields.

Photonic materials

When the structure of a substance is smaller than wavelength of interest, the interaction between light and matter exhibits completely different behavior from that on the macro scale. Considering wavelength of electron, this phenomenon is same in case of the interaction between electron and matter. Therefore, we use the word “nano-photonic” to refer to the mutual interaction between light/electron and matter in the nano-region. We are constantly researching new materials which utilize this interaction between light/electron and light.

Energy

New industries give people new ways of living from which new values are born. Then, these new values help acquire new and more accurate knowledge, which in turn will create new science. To foster and develop new industries, we now aim to create them for example by utilizing light for generating electrical power, medical treatment and for new substances based primarily on research into laser fusion capable of extracting energy from hydrogen isotopes available in the nearly inexhaustible supply of seawater.

Semiconductor laser IPMSEL®

Subminiature light source device that freely controls light. This device will open up various new applications such as natural 3D displays.

Laser fusion

Creating a sun on Earth is an attempt to trigger nuclear fusion in high temperature, high-density plasma by irradiating high power laser onto a deuterium/tritium pellet.

Advanced light-control technology

To unlock the mysteries of quantum mechanics, we are working to make a quantum simulator a reality by creating and harnessing photonics technology for controlling individual atoms.

Fluorescence observation method

Fluorescence observation is used to study the cell cycle. We are developing a new method for cell observation and will apply it to the discovery of new drugs and regenerative medicine.

Life Photonics

A future world with an optimal balance among Earth, people, and all life --- we aim to achieve this wonderful dream through the research into “light” which is the source of all substances.

Shedding light on every problem mankind faces
Pursuing the ultimate in performance guided by past experience in fabricating devices for academic research has led to applications in high-precision optical measurement such as in medical, environmental and measurement fields, and its use has even spread to monozukuri or namely the creating of things that support life.

Mass spectrometers are widely used in the analysis of environmental samples, biomolecules, and various materials. They are also applied to the detection of environmental regulatory substances such as pesticides and industrial waste, as well as new drug development by analyzing proteins and amino acids. Hamamatsu Photonics has developed many devices for mass spectrometry, such as MCP assemblies, electron multipliers, ionization-assisting substrates named DIUTHAME™, etc.
Getting a grasp on what lies one step ahead for our world. Pushing the limits of our unique opto-semiconductor technology to meet advanced user needs.

This technology of light is the path to new global possibilities.

The Solid State Division has explored physical properties that determine opto-semiconductor performance since the early days in this field and succeeded in creating a variety of product lineups. Our opto-semiconductor products incorporate unique semiconductor process technology, mounting & packaging technology, and MEMS technology, and cover a wide wavelength range from infrared, visible, ultraviolet, all the way to X-rays and high energy rays. They are used in wide-ranging fields including medical care, scientific measurement, communications, consumer electronics, and vehicle on-board electronics. We will continue to pursue opto-semiconductor technology, always staying one step ahead, to meet the increasingly sophisticated needs of the future.

TOPIC

Opto-semiconductor devices for driving support systems

Advanced driving support functions for cars are evolving at an ever more rapid pace. These include interfaces for reliably checking information essential for driving and systems for detecting possible hazards in advance. Our Solid State Division is actively working to commercialize opto-semiconductor devices (Si APD, MPPC, distance image sensor, etc.) for detecting vehicle periphery information which plays a vital role in making these on-board vehicle functions work effectively.
Creating the breakthrough specialized systems based on the optical sensor technology

Our Systems Division is developing and manufacturing systems that integrate light detection technology, imaging technology, and image processing technology by using optical sensors. By utilizing our expertise and high technology as a leading sensor manufacturer, we design and develop specialized systems that combine core products, such as cameras with peripheral technologies and equipments.

TOPIC

Developing digital CMOS cameras for scientific measurement

Our digital CMOS cameras for scientific measurement simultaneously deliver high speed, high sensitivity, and high resolution, making them widely relied on as an industry standard for fluorescence microscope cameras. At Hamamatsu Photonics we continually work to make fluorescence microscope cameras with more user-friendly and advanced functions that are still easy to use.
Creating energy to carve out a path to the future

Fabricating high-reliability laser products with our advanced photonics technology

With laser fusion research as its core, we are working on multifaceted developments of laser technologies.

We are exploring still further possibilities for laser by merging integrated optics technology and our cultivated technology by laser fusion research, such as gas laser, semiconductor laser, and solid-state laser.

TOPIC

Next-generation social infrastructure devices

Sensing technology is currently used in all kinds of situations in our daily lives. Among these, non-contact optical sensing technology using light from compact lasers is very promising. Small and highly robust semiconductor lasers will play an indispensable role in every part of our daily lives, such as for various promising self-driving sensing functions including car collision prevention, human body sensing for auto door operation on subway and railroad station platform, and for detecting people at railway crossings.

PRODUCTS

Single chip laser diodes
Semiconductor lasers used for a broad range of applications including measurements, communications, printing, medical and cosmetic treatment, and solid-state laser pumping.

Laser diode bar modules
These modules fully exhibit the high-level performance, large energy output and high reliability that are features of LDs, and are designed for easy handling. Stacking the semiconductor laser bars enables high-power output.

Applied products of semiconductor lasers
Semiconductor laser light sources optimized for thermal processing applications. Our product line-up includes the LD-HEATER with advanced functions and SPOLD with general-purpose functions.

Lasers for thermal processing
Lasers are used for many thermal processing tasks including resin welding, soldering, and hermetic sealing of glass as well as welding and quenching.

Lasers for non-thermal processing
Lasers are also ideal as light sources for various non-thermal processing applications where high precision micro-processing is required.

Optics products
Optics products required by high-performance lasers such as reflecting mirrors, beam splitters, and antireflective coating.

Quantum cascade lasers (QCL)
Semiconductor lasers having an oscillation wavelength in the mid-infrared region. Selecting the right oscillation wavelength allows measuring trace amounts of any desired gas, so quantum cascade lasers are beginning to be used as light sources for environmental gas measurement.

Solid-state lasers
Solid-state laser products developed by merging our semiconductor laser technology, optical design technology, optical thin-film technology, polishing and bonding technology (MEMS: Micro-Electro-Mechanical-Systems) and optical nanoscale technology and other cutting-edge technologies.

Wavefront shaper
Wavefront shaper consist of an LCOS-SLM (Liquid Crystal on Silicon - Spatial Light Modulator) and its controller for optical phase modulation, designed to easily connect to optical equipment such as laser processing machinery and optical microscopes.

Semiconductor laser diodes
Semiconductor lasers used for a broad range of applications including measurements, communications, printing, medical and cosmetic treatment, and solid-state laser pumping.

Lasers and related technology development

Creating energy to carve out a path to the future

Technology to widen the path to future dreams

Fabricating high-reliability laser products with our advanced photonics technology

With laser fusion research as its core, we are working on multifaceted developments of laser technologies.

We are exploring still further possibilities for laser by merging integrated optics technology and our cultivated technology by laser fusion research, such as gas laser, semiconductor laser, and solid-state laser.

TOPIC

Next-generation social infrastructure devices

Sensing technology is currently used in all kinds of situations in our daily lives. Among these, non-contact optical sensing technology using light from compact lasers is very promising. Small and highly robust semiconductor lasers will play an indispensable role in every part of our daily lives, such as for various promising self-driving sensing functions including car collision prevention, human body sensing for auto door operation on subway and railroad station platform, and for detecting people at railway crossings.

PRODUCTS

Single chip laser diodes
Semiconductor lasers used for a broad range of applications including measurements, communications, printing, medical and cosmetic treatment, and solid-state laser pumping.

Laser diode bar modules
These modules fully exhibit the high-level performance, large energy output and high reliability that are features of LDs, and are designed for easy handling. Stacking the semiconductor laser bars enables high-power output.

Applied products of semiconductor lasers
Semiconductor laser light sources optimized for thermal processing applications. Our product line-up includes the LD-HEATER with advanced functions and SPOLD with general-purpose functions.

Lasers for thermal processing
Lasers are used for many thermal processing tasks including resin welding, soldering, and hermetic sealing of glass as well as welding and quenching.

Lasers for non-thermal processing
Lasers are also ideal as light sources for various non-thermal processing applications where high precision micro-processing is required.

Optics products
Optics products required by high-performance lasers such as reflecting mirrors, beam splitters, and antireflective coating.

Quantum cascade lasers (QCL)
Semiconductor lasers having an oscillation wavelength in the mid-infrared region. Selecting the right oscillation wavelength allows measuring trace amounts of any desired gas, so quantum cascade lasers are beginning to be used as light sources for environmental gas measurement.

Solid-state lasers
Solid-state laser products developed by merging our semiconductor laser technology, optical design technology, optical thin-film technology, polishing and bonding technology (MEMS: Micro-Electro-Mechanical-Systems) and optical nanoscale technology and other cutting-edge technologies.

Wavefront shaper
Wavefront shaper consist of an LCOS-SLM (Liquid Crystal on Silicon - Spatial Light Modulator) and its controller for optical phase modulation, designed to easily connect to optical equipment such as laser processing machinery and optical microscopes.

Semiconductor laser diodes
Semiconductor lasers used for a broad range of applications including measurements, communications, printing, medical and cosmetic treatment, and solid-state laser pumping.

Lasers and related technology development

Creating energy to carve out a path to the future

Technology to widen the path to future dreams

Fabricating high-reliability laser products with our advanced photonics technology

With laser fusion research as its core, we are working on multifaceted developments of laser technologies.

We are exploring still further possibilities for laser by merging integrated optics technology and our cultivated technology by laser fusion research, such as gas laser, semiconductor laser, and solid-state laser.

TOPIC

Next-generation social infrastructure devices

Sensing technology is currently used in all kinds of situations in our daily lives. Among these, non-contact optical sensing technology using light from compact lasers is very promising. Small and highly robust semiconductor lasers will play an indispensable role in every part of our daily lives, such as for various promising self-driving sensing functions including car collision prevention, human body sensing for auto door operation on subway and railroad station platform, and for detecting people at railway crossings.

PRODUCTS

Single chip laser diodes
Semiconductor lasers used for a broad range of applications including measurements, communications, printing, medical and cosmetic treatment, and solid-state laser pumping.

Laser diode bar modules
These modules fully exhibit the high-level performance, large energy output and high reliability that are features of LDs, and are designed for easy handling. Stacking the semiconductor laser bars enables high-power output.

Applied products of semiconductor lasers
Semiconductor laser light sources optimized for thermal processing applications. Our product line-up includes the LD-HEATER with advanced functions and SPOLD with general-purpose functions.

Lasers for thermal processing
Lasers are used for many thermal processing tasks including resin welding, soldering, and hermetic sealing of glass as well as welding and quenching.

Lasers for non-thermal processing
Lasers are also ideal as light sources for various non-thermal processing applications where high precision micro-processing is required.

Optics products
Optics products required by high-performance lasers such as reflecting mirrors, beam splitters, and antireflective coating.

Quantum cascade lasers (QCL)
Semiconductor lasers having an oscillation wavelength in the mid-infrared region. Selecting the right oscillation wavelength allows measuring trace amounts of any desired gas, so quantum cascade lasers are beginning to be used as light sources for environmental gas measurement.

Solid-state lasers
Solid-state laser products developed by merging our semiconductor laser technology, optical design technology, optical thin-film technology, polishing and bonding technology (MEMS: Micro-Electro-Mechanical-Systems) and optical nanoscale technology and other cutting-edge technologies.

Wavefront shaper
Wavefront shaper consist of an LCOS-SLM (Liquid Crystal on Silicon - Spatial Light Modulator) and its controller for optical phase modulation, designed to easily connect to optical equipment such as laser processing machinery and optical microscopes.

Semiconductor laser diodes
Semiconductor lasers used for a broad range of applications including measurements, communications, printing, medical and cosmetic treatment, and solid-state laser pumping.

Lasers and related technology development

Creating energy to carve out a path to the future

Technology to widen the path to future dreams

Fabricating high-reliability laser products with our advanced photonics technology

With laser fusion research as its core, we are working on multifaceted developments of laser technologies.

We are exploring still further possibilities for laser by merging integrated optics technology and our cultivated technology by laser fusion research, such as gas laser, semiconductor laser, and solid-state laser.

TOPIC

Next-generation social infrastructure devices

Sensing technology is currently used in all kinds of situations in our daily lives. Among these, non-contact optical sensing technology using light from compact lasers is very promising. Small and highly robust semiconductor lasers will play an indispensable role in every part of our daily lives, such as for various promising self-driving sensing functions including car collision prevention, human body sensing for auto door operation on subway and railroad station platform, and for detecting people at railway crossings.
History of Hamamatsu Photonics

Chronology of main products

1950’s
- Production of phototubes started.

1953
- Hamamatsu TV Co., Ltd. (former company name) established.
- Production of phototubes started.
- Production of PbS photoconductive detectors started.
- Infrared video cameras were put on the market.
- Photo multiplier tubes were put on the market.

1956
- Image pickup tubes were put on the market.
- CdS cells were put on the market.

1959
- Photo multiplier tubes were put on the market.

1960’s
- Deuterium lamps were put on the market.
- Linear image sensors were put on the market.
- Excimer lasers were put on the market.

1961
- Tokyo Business Office (Tokyo Sales Office) opened.
- Ichiro Factory (Ichiro Glass Works) opened.
- New York Business Office opened.
- Hamamatsu Corporation established as a U.S.A. subsidiary.

1964
- Germany joint company, Hamamatsu Television Europe GmbH, established.
- Tenno Glass Works opened.
- Osaka Sales Office opened.

1966
- Joko Factory opened.
- Ichino Factory (present Main Factory) opened.
- Ichino Factory when it was built.
- Hamamatsu Television (Tokyo Sales Office) opened.

1969
- Central Research Laboratory opened.
- Company name changed to Hamamatsu Photonic K.K.
- Hamamatsu TV Co., Ltd. (former company name)

1970’s
- Electrode lamps were put on the market.
- Silicon photodiodes were put on the market.
- Linear streak camera systems were put on the market.
- CD camera systems were put on the market.
- Photo ICs were put on the market.
- X-ray laser systems were put on the market.

1972
- Xenon lamps were put on the market.
- CdS cells were put on the market.
- High power pulsed laser diodes were put on the market.
- Quantum cascade lasers were put on the market.

1977
- Fluorescent lamps were put on the market.
- Linear streak camera systems were put on the market.
- High power pulsed laser diodes were put on the market.
- Quantum cascade lasers were put on the market.

1980’s
- Microfocus X-ray sources were put on the market.
- Flat panel sensors were put on the market.
- ORCA-Flash4.0 (scientific CMOS camera) was put on the market.
- MPPC (Multi-Pixel Photon Counter) was put on the market.

1981
- Tenno Glass Works opened.
- Company name changed to Hamamatsu Photonics K.K.

1982
- Infrared LEDs were put on the market.
- Micro Laser diodes were put on the market.
- High power pulsed laser diodes were put on the market.
- Micro PMT was put on the market.

1985
- Headquarters Business Office opened and Tsukuba Research Laboratory established.
- Subsidiary established in France.
- Company’s stock registered on the second section of the Tokyo Stock Exchange.
- The Graduate School for the Creation of New Photonics Industries established for aiming at creating new industries using photonics technology.

1988
- Subsidiary established in the U.K. and Sweden.
- Joint company established in China.
- Company name sign (Japanese)
- Company’s stock registered on the first section of the Tokyo Stock Exchange.
- The Graduate School for the Creation of New Photonics Industries was completed to facilitate the early detection of cancer and dementia.

1990’s
- Microfocus X-ray sources were put on the market.
- Flat panel sensors were put on the market.
- ORCA-Flash4.0 (scientific CMOS camera) was put on the market.
- MPPC (Multi-Pixel Photon Counter) was put on the market.

1990
- Central Research Laboratory opened.
- European Communication & Support Office established. Subsidiary established in Italy.
- Microfocus X-ray sources were put on the market.
- Flat panel sensors were put on the market.

1991
- Joko Factory opened.
- Miyakoda Factory opened.
- Osaka Sales Office opened.
- Hamamatsu Corporation established as a U.S.A. subsidiary.

1994
-中期 Factory opened.
- Company’s stock registered on the first section of the Tokyo Stock Exchange.
- Compound semiconductor Fabrication Center opened.
- Industrial Development Laboratory opened.

1996
- Company’s stock registered on the first section of the Tokyo Stock Exchange.
- Compound semiconductor Fabrication Center opened.
- Industrial Development Laboratory opened.

1998
- Company’s stock registered on the second section of the Tokyo Stock Exchange.
- Company’s stock registered on the first section of the Tokyo Stock Exchange.

2000’s
- Miwae Factory opened.
- Compound semiconductor Fabrication Center opened.
- Energy Light Technology, Inc. (U.S.A.) acquired as a subsidiary.
- Compound semiconductor Fabrication Center opened.
- Compound semiconductor Fabrication Center opened.

2002
- Masatoshi Koshiba, professor emeritus of the university of Tokyo, was awarded the Nobel Prize in Physics (for the research at Kamiokaonde where our photomultiplier tubes were installed).
- Professors emeritus François Englert and Peter W. Higgs were awarded the Nobel Prize in Physics (for Higgs boson discovery at CERN’s LHC where our SSD, APD and PMT were used).

2005
- A building of the general incorporated foundation: Hamamatsu Medical Photonics Foundation was completed to facilitate the early detection of cancer and dementia.
- The Graduate School for the Creation of New Photonics Industries was completed to facilitate the early detection of cancer and dementia.

2008
- Our 20-inch photomultiplier tube was recognized as an IEEE milestone for the contribution to neutrino observation.
- Compound semiconductor Fabrication Center opened.

2011
- Shingai Factory opened.
- Subsidiary established in China.

2013
- Professors emeritus François Englert and Peter W. Higgs were awarded the Nobel Prize in Physics (for Higgs boson discovery at CERN’s LHC where our SSD, APD and PMT were used).

2014
- Our 20-inch photomultiplier tube was recognized as an IEEE milestone for the contribution to neutrino observation.
- Compound semiconductor Fabrication Center opened.

2015
- Professor Takaaki Kajita, the university of Tokyo, was awarded the Nobel Prize in Physics (for the research at SuperKamiokaonde where our photomultiplier tubes were installed).

2017
- Compound semiconductor Fabrication Center opened.
- Energetiq Technology, Inc. (U.S.A.) acquired as a subsidiary.
- Compound semiconductor Fabrication Center opened.

2020
- Compound semiconductor Fabrication Center opened.
- Energetiq Technology, Inc. (U.S.A.) acquired as a subsidiary.
Instead of being taught by someone,
See it with your own eyes,
Listen to it with your own ears,
Understand it with your own heart.
What we do not know and what we
cannot do is an infinite dimension
we must now explore.

Teruo Hiruma